
Final Report

Team: sdmay20-43 Client: Dr. Simanta Mitra Advisor: Dr. Simanta Mitra

Analysis of GitLab Project Using Boa

Team Member – Roles:

Diego Realpe – Team Lead

Adrian Hamill – Test Engineer

Benjamin Carland – Test Engineer

Megan Miller – Test Engineer | Website Manager

Yi-Hsien Tan – Test Engineer | Website Manager

Team website: http://sdmay20-43.sd.ece.iastate.edu

http://sdmay20-43.sd.ece.iastate.edu/

Table of Contents

Analysis of GitLab Project Using Boa 1

1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 5

2 Implementation and Design Analysis 5

2.1 Proposed Design 5

2.2 Design Analysis 6

2.3 Design Plan 7

2.4 Implementation Details 8

3 Revised Project Design 9

3.1 Data Pipeline Revision 9

4 Testing 10

4.1 Interface Specification 10

4.2 Hardware and Software 10

4.3 Functional Testing 11

4.4 Non-functional Testing 11

4.5 Process 12

4.6 Results 13

5 Appendices 14

5.1 Appendix I – Operation Manual 14

5.2 Appendix II – Initial Version of Design 14

List of figures/tables/symbols/definitions

Definition

1 Boa – A DSL developed by ISU to data mine software repositories.

2 Data Pipeline – One of the sub-team that specializes in developing the data pipeline

of the software.

3 Boa Research – One of the sub-team that specializes in understanding and creating

Boa queries.

4 Boa expert – The experts who created/are professional in Boa.

5 DSL – Domain Specific Language

6 CLI – Command Line Interface

7 OS – Operating System

8 RID – Requirement ID

9 FR – Functional Requirement

10 NR – Non-functional Requirement

Figure

1 Visual Design Plan

2 Process Diagram

3 System Testing Flow

4 Data Pipeline Process

Tables

1 Requirements

1 Introduction

1.1 Acknowledgement

Special thanks to the Boa team experts for providing their professional help throughout our

development, as well as our advisor Simanta Mitra for giving us valuable feedbacks, and

providing us resources we need.

1.2 Problem and Project Statement

This project aims to integrate an existing Domain Specific Language (DSL) Boa, developed by a

team of experts in Iowa State University, with GitLab. This project can help our client in

evaluating the repositories of his classes on GitLab efficiently.

The project consists of three major tasks:

• Integration of Boa with GitLab.

• Analysis of GitLab projects with Boa.

• Generation of analysis report using R with data from GitLab.

The output of our design:

• Command Line Interface (CLI) program that does analysis on GitLab repositories.

• Output analytic reports with R programming language.

1.3 Operational Environment

The program should run on both Windows and Linux OS command line. No support for mobile

application.

1.4 Requirements

RID Requirement Name Description

FR1 Analyze Repositories The program shall analyze repositories from GitLab.

FR2 Analytic Reports in R The Program shall display analytic reports with R

programming language.

FR3 Report Partitioning The report shall contain two sections – commitment

and code quality analysis.

FR4 Backend Automation When the program runs, backend work shall be

done automatically without manual connection.

NR1 CLI The program shall be a CLI.

NR2 Ease of Learning New users shall be able to learn the use all features

of this program in less than 10 minutes.

NR3 Ease of Use Analytic reports shall be displayed with just one

click.

NR4 Security and Confidentiality All information of repositories shall remain

confidential.

NR5 Data Integrity All software repositories’ metrics shall remain

original and unaltered after running the analysis.

Table 1: Requirements

1.5 Intended Users and Uses

This program is intended for:

• SE/ComS309 evaluators/graders.

• Possibly any users who are interested in data mining software repositories, depending if

our client wants to publish the program.

1.6 Assumptions and Limitations

Assumption:

• There are no multiple user running this program at the same time.

• The primary users will be our client/his classes’ graders.

Limitation:

• There are some backend functions that must be done manually occasionally.

• Only professionals who understand the program can maintain the program.

2 Implementation and Design Analysis

The foundation of our project was well implemented during the first half of the year. We

separated our implementation into the front-end (handled by the Boa Research sub-team) and

the back-end (handled by the Data Pipeline sub-team) during the first semester, and we

combined both sub-teams’ work into the final implementation we have now.

2.1 Proposed Design

The design of this project calls for a CLI front-end to ensure minimal computational memory

consumption to run the software.

The software repository analyzing language of this software is built on top of an existing DSL

named Boa, developed by a team of experts in Iowa State University. This involves members

from the Boa Research sub-team to run many created queries to understand the code structure

of the language in order to create our own Boa queries.

The program is created to be user friendly and as automatic as possible; the initial section of the

program consists of configurations for the program. We collect the target repositories to be

analyzed along with the queries to be run. From here the program takes off on its own, it

requests the entire repository from GitLab and makes a replication of it in GitHub, this since the

BOA analysis tool is only compatible with GitHub. This part juggles permissions and remote

commands to git that create replica repositories from the name to the metadata and code,

conserving it exactly from the original.

After this replication process that we have come to call "pull down, push up", we request the

metadata from the GitHub API and store it locally so we can run queries against it to determine

project quality. These are run in series and look and measure multiple aspects of the metadata

obtained for each project.

Then the output is collected by a background daemon that will take this output and parse it in a

clean format and alert the system when it is complete. When it is done, the final parsed output

will be a clean compilation of the results for each analyzed repository from which we use R

scripts to display graphically for our user.

2.2 Design Analysis

The team set up a basic implementation of the Boa framework for GitLab, which was built

referencing the current implementation of Boa for GitHub. This has been a very effective

strategy; the team can free up more time to focus on creating useful queries for better analysis,

as well as creating our own “version” of Boa for GitLab.

At the beginning of the program we were bound by some constraints to make the Boa tool work

alongside us. This tool was not compatible with any other sort of repository that was not GitHub

and it was a monolithic piece of code that was complicated to predict on its behaviors, addedly

that it had little documentation. Backend team's design settled on making a transition setup so

this way the Boa tool that collected the repository information could have its desired input. The

repositories found in GitLab needed to be completely downloaded and then replicated exactly

as they are now in GitHub. For this we found several custom Bash tools that could allow us to

do these actions automatically without needing to use the Web-Based UI that GitHub has to

create remote repositories. The primary one we used was called Hub. This tool acts as a CLI

front to do actions not available with the native git program like creating a GitHub remote

repository for an account.

The program's final end goal is to create "SequenceFiles" which contain the metadata for the

entire repository being analyzed. Think of this as the raw data at this point. From these we can

feed them into the Boa interpreter which will run any given Boa query against the SequenceFile

and return the result in a .txt file with the field or fields of the information requested by the user.

When the job is submitted by the user, which kickstarts the process of readying the repositories

into being turned into SequenceFiles. It also passes information like input and output directories

and credentials from where to take the repos from and to. Lastly it prepares the end part of the

program to wait for these results and parse them. The program turns on a daemon using the

package fswatch whose job is to look for newly created text files that appear in the output

directory and when it sees these, it passes its name and other information like the query type

that this output file contains so we know how to parse the information correctly. This file parser

creates comma separated value type files from the results of the Boa query where each new

row is a new parsed SequenceFile and hence a different project to be graphed by R.

The R programming language typically works using an IDE of some sort and manually creating

scripts that graph the input data, however we needed to make our process automatic and

couldn’t rely on our user having to manually look for the finished csv file and select the query to

run, so instead the backend team found another custom package that can be used inside of our

CLI which invokes R and gives it the csv file and an R script to use against it. Finally, the

command is run and the R graph is displayed.

2.3 Design Plan

Figure 1 shows the visual plan of our design.

Figure 1: Visual Design Plan

2.4 Implementation Details

The entire process can be divided into three main pieces, along with setup and input. The entire

process is shown visually in Figure 2.

Setup:

- Before using the software, the user has to designate the target GitLab repositories that

are to be analyzed.

1. Repository Processing (Pull Down, Push Up)

- The credentials and addresses are used to fetch the repository images from GitLab and

store it in local. Then, a script will replicate equivalent repositories on GitHub for an API

to access it.

Input:

- When the user runs the software, they will be prompted to select a query to run on all the

designated repositories.

2. Repository Analysis (Boa querying)

- The data is then scrapped by Boa using the GitHub API into the SequenceFiles with all

the metadata that we need to analyze and run it against the selected Boa query. After

the analysis is completed, the software will output the query result in text file.

3. Result Processing (R scripting)

- The software runs a daemon in the background which takes the outputted query result

and automatically parse it in a .csv file that can be translated into graphical report with R

scripts.

Figure 2: Process Diagram

3 Revised Project Design
The design of our software has changed since the Fall 2019 semester. While things are

changing in our design, we had to come up with creative ways and solutions to accomplish the

requirements we initially set out to fulfill. This section contains all the changes we have made

since our last design document.

3.1 Data Pipeline Revision

During the year started working on the backend design we had many different ideas of how we

could implement this, not too long after some of the constraints we had by our client, like using

specifically the Boa tool, which in turn also subjected us to the constraints of the Boa tool itself.

At the very beginning of Fall 2019 we believed we could come up with a solution that would

involve directly pulling the repository information from GitLab itself without needing our existing

transition through GitHub. We believed we could parse the GitLab repositories manually and

obtain the same end result. The SequenceFile raw data. This was not the case as both our

attempts to adapt the SequenceFile Generator to use GitLab and our attempt to make the

SequenceFiles themselves were unsuccessful. This mainly because of the monolithic nature of

the Boa tools we were subjected to use and little documentation to go by off.

We also experienced problems with authentication towards both GitLab and GitHub. The

repository analysis in Boa is still being worked on by the ISU graduate researchers and it is not

yet a commercially ready product. Because of this, there seems to be no protocol native to Boa

to authenticate with the remote repository that is to be turned into a SequenceFile. Since no

authentication and identity verification can be made to GitHub then it means that Boa is not

compatible to turn private repositories into SequenceFiles. This was a major hole in our design

which counted that we could incorporate some type of solution which could allow us to keep any

analyzed repo private for the entirety of the process. This was immediately notified by our client

along with a compromising solution for it. We would maintain the repositories private in GitLab

and handle them as much as we could locally, but when they got uploaded GitHub it only would

be a temporary replica which would be alive publicly for a very short amount of time (minutes)

until the repo could be uploaded and converted into a SequenceFile by the GitHub API + the

Boa SequenceFile creator. Afterwards the content and the project itself would be deleted

leaving no trace.

Currently this is the current version of the backend which our client Dr Mitra has approved of.

4 Testing

4.1 Interface Specification

The software interfaces we will need to test our software are minimal. A series of a few GitLab

repositories with dummy code of good and bad quality and various amounts of commits that we

wish to set up so we can test the efficiency of the suite of queries we have created and determine

if they were able to provide useful insights to each of them.

4.2 Hardware and Software

- CS309 Old Repositories: These will be used to perform load testing on our system, filled

with code from past 309 semesters

- Dummy Repositories: These will have mocked code with edge cases and various types

of errors.

- Mac Mini: This computer will be our test server where the first prototype will be tested.

- Boa Website: Functional website from the Boa labs where isolated queries will be

compiled and tested.

4.3 Functional Testing

- Unit: We are going to make each of the queries we develop to go through unit testing by

running them in isolation on the Boa website which has an online compiler of the Boa

language. This to test the correct functionality of each before integrating them in the

query suite

- Integration: We are going to use some dummy repositories developed to observe if the

transition between the backend pipeline to the analysis piece of the system transitions

the information accurately

- System: Our final tests for the system will be performed close to the end of Spring

semester, using the repositories from CS309 of the current semester. If successful we

should see analysis and insights that correspond to those student’s final grades.

4.4 Non-functional Testing

- Load: Using access to the large amounts of code found in the archives of CS309 we will

perform a load test to determine that the final product is fully able to handle the volume of

an average 309 class for our client.

- Compatibility: Unfortunately, the overarching project that we are using can only handle

MacOS. However, we will test compatibilities on both the Client’s machine and our Mac

Mini (which have different versions of MacOS) to ensure that the transition between one

and the other has no bugs or issues.

- Usability: At the end we will allow Dr. Mitra to have a period of test with the final product

and address any usability features he would like changed or added.

4.5 Process

The process for testing each of our methods will follow a semi manual testing. Since the

technology we are using is very niche, there are no real ways of mocking it. Our overall plan is

to perform blind experiments with our data to test the reproducibility of our insights. By feeding

the pipeline unknown quality of code and obtaining our results, we can check the veracity of it

by actually reading from the project afterwards and if the assessments of the system seem

accurate

Figure 3: System Testing Flow

4.6 Results

4.6.1 Backend Results

The pipeline backend has yielded some results

already regarding the cloning, scraping and

automation of the data. Our first solution for this

problem looked to pull directly from the GitLab repo

using a government program designed for this.

However, after conclusions that the program was not

suitable and failed to provide the particular pieces of

metadata, we required we moved onto a different

one. This solution allowed us to make clones of the

repositories in GitHub with all data intact (which is

one of our requirements) and from there we can use

the Boa Labs code which does work on GitHub and

allow the pipeline to query a GitHub API to construct

the metadata JSON files necessary for Boa to

execute against. A diagram of the breakdown of the

system can be seen to the right where the process is

detailed.

This system is also tested against the edge cases of

a repository. Based on the trials and errors we

underwent to bring a prototype of the scaping script

and process we have gained tons of knowledge on

how Boa operates and also has given us a time to

partner with the experts that use Boa, allowing us to

have a quick place where to go for extra resources or

when we get stuck in a problem.

4.6.2 Boa Analysis

The Boa Research sub-team utilizes many existing software like FindBugs and SpotBugs to

compare results against the results produced by our Boa queries. The Boa libraries also offer to

make a tool that talks about code quality on each of the repositories. As we go into the

development and writing of these queries, the directions we take to assess the quality of a

project spreads out and multiple aspects of the metrics we are given will be compared. As

mentioned before, Boa is a complex language to write high level analysis tools for and we

expect a lot of trial and error in this section as lots of ideas will be tried and discarded while we

push the limits of what Boa can and cannot do. Final results on this area will be a suite of

queries that can be toggled on or off that analyze different parameters of the code, we also

check for things like documentation and private variables to ensure readability, cohesion and

coupling issues.

Figure 4: Data Pipeline Process

5 Appendices

5.1 Appendix I – Operation Manual

The project has been developed to require little manual control from the user. For running this

project please start at the home directory and run ./setup.bash. Here the setup script will be

started and ask the user for configuration specifications. It will ask about the system this will be

run in. Either MacOS or Linux. Afterwards, the instructions will print and guide the user smoothly

through the installation process. A couple of utilities will sometimes require additional info, like

as an example, the utility "Hub", which will manage the push up, pull down solution will need an

access token to be provided to it. Afterwards the user needs to specify the repositories that the

program will be running against. You will be prompted to provide a Git username and a URL,

then give an access token for the utility to to have permissions to automatically manipulate

repositories on your behalf. Finally it needs a local directory where it will run the project data

scraping in and store files in. Provide the program with this target and give it the path of the

repositories you want analyzed too. The program will then proceed to use the Sed utility to

insert your given configuration options into the data scraping scripts that are in the generics

folder and run them. At the end of this process the SequenceFiles for the given repositories

should be created and ready to be run queries against them. The program now is ready for you

to choose Boa analysis queries from our given suite and repository SequenceFiles for you to

run against.

5.2 Appendix II – Initial Version of Design

The initial version of our software design is mainly different in the backend part. Initially our

design is to build an entire Boa framework on GitLab since the original Boa only works on a

handful of software development version control site like GitHub and SourceForge. It is proven

that our initial idea is very difficult to be achieved as GitLab does not provide the same API we

need to run Boa as GitHub does.

In our current design, instead of building a Boa framework on GitLab, we decided to clone all

the repositories we want to analyze on GitLab onto GitHub. Not only this will save us tons of

development time by using existing resources, we can devote our time on perfecting the

transition of “pull down, push up”, as well as our script to run the process.

In terms of the frontend, there isn’t any changes since how the team planned out in the

beginning. To understand more about the frontend, visit section 2.

